随着数字化转型需求增长,AI在企业中的应用也越来越多,AI开发门槛高、应用场景复杂多样、对场景标注数据依赖等问题成为AI规模化落地的挑战,而预训练大模型的出现则为人工智能带来了新的机遇与希望。 大模型作为政府和企业推进人工智能产业发展的重要抓手,在识别、理解、决策、生成等AI任务的泛化性、通用性、迁移性方面都表现出显著优势和巨大潜力。 IDC预测: 未来大模型将带动新的产业和服务应用范式,在深度学习平台的支撑下将成为产业智能化基座,企业需加快建设人工智能统一底座,融合专家知识图谱,打造可面向跨场景或行业服务的“元能力引擎”。 具体来看: 大模型具有良好的通用性、泛化性,显著降低人工智能应用门槛。 预训练大模型在海量数据的学习训练后具有良好的通用性和泛化性,用户基于大模型通过零样本、小样本学习即可获得领先的效果,同时“预训练+精调”等开发范式,让研发过程更加标准化,显著降低了人工智能应用门槛,成为AI走向工程化应用落地的重要手段。 深度学习平台为预训练大模型的发展保驾护航,两者结合夯实了产业智能化基座。 深度学习平台是推动产业智能化转型升级的核心载体,为大模型的算法开发、训练、部署保驾护航。大模型加上深度学习平台,贯通了从硬件适配、模型训练、推理部署到场景应用的AI全产业链,夯实产业智能化基座,将加速产业智能化升级。 大模型在推进产业智能化升级中已表现出巨大潜力,企业应该尽早关注。 大模型目前的产业应用包括面向企业提供AI中台基座、深度定制支持产品或生产的优化与创新、开放模型服务等。大模型已经在搜索、推荐、智能交互、AIGC、生产流程变革、产业提效等场景表现出巨大的潜力,企业应该尽早关注,在业务中布局。 未来还需加强大模型与真实场景需求匹配,推动大模型大规模落地。 目前中国大模型厂商在模型布局方面较为完善,应进一步围绕行业赋能的广度和深度持续探索,不断夯实基于大模型的产品建设,推动大模型技术从实验室走向实际大规模落地。 ┃ 免责声明:本文版权归原发布机构及作者,如涉及侵权请联系删除。本文仅供参考,如需使用相关信息请参阅报告原文。 ┃ 获取PDF完整版报告下载方式请关注:报告派 |